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Debye-Hückel theory for interfacial geometries

Roland R. Netz
Max-Planck-Institut fu¨r Kolloid-und Grenzfla¨chenforschung, Am Mu¨hlenberg, 14424 Potsdam, Germany

~Received 26 February 1999!

The Debye-Hu¨ckel theory for bulk electrolyte solutions is generalized to planar interfacial geometries,
including screening effects due to mobile salt ions which are confined to the interface and solutions with in
general different salt concentrations and dielectric constants on the two sides of the interface. We calculate the
general Debye-Hu¨ckel interaction between fixed test charges, and analyze a number of relevant special cases as
applicable to charged colloids and charged polymers. Salty interfaces, which are experimentally realized by
monolayers or bilayers made of cationic and anionic surfactants or lipids, exert a strong attraction on charged
particles of either sign at large separations from the interface; at short distances image-charge repulsion sets in.
Likewise, the effective interactions between charged particles are strongly modified in the neighborhood of
such a salty interface. On the other hand, charged particles which are immersed in a salt solution are repelled
from the air~or a substrate! interface, and the interaction between two charges decays algebraically close to
such an interface. These general results have experimentally measurable consequences for the adsorption of
charged colloids or charged polymers at monolayers, solid substrates, and interfaces.
@S1063-651X~99!11109-7#

PACS number~s!: 61.20.Qg, 68.10.2m, 82.45.1z
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I. INTRODUCTION

The Debye-Hu¨ckel ~DH! theory was introduced some 7
years ago@1#. As was demonstrated, the effective intera
tions between charges are weakened~i.e., screened! due to
the presence of mobile ions in the surrounding space. Th
mobile ions form a highly polarizable background, whi
reacts to the presence of fixed charges by organizing
loosely bound counterion clouds, thereby partially neutra
ing the fixed charges. As a result, the long-ranged Coulo
interactionv(r );1/r between two charges is reduced a
acquires an exponential screening factor,v(r );e2kr /r ,
wherek is the inversescreening lengthwhich is proportional
to the square root of the salt concentration.

The approximations leading to the DH theory are valid
long as the electrostatic potential is small everywhere. T
condition is satisfied if the charge density is not too high
if the salt concentration is large enough. In the opposite c
for high electrostatic potentials, nonlinear effects, not c
tured by DH theory, become important, which can be
scribed, on a mean-field level, by the Poisson-Boltzma
equation@2,3#. The main advantage of the DH theory is th
it captures~on a Gaussian level! ion fluctuations and that
since it is a linear theory, thesuperposition principleis valid:
Once the electrostatic potential distribution of a sing
charge has been calculated~which is merely the Green’s
function!, the total potential of an arbitrary charge distrib
tion follows by the summation over the potentials created
each single charge. This also holds for an interfacial geo
etry, which forms the motivation for the present work
which we calculate the DH Green’s function in the presen
of an interface.

Interfacial effects in the context of ionic systems ha
received preliminary attention because it was shown that
surface tension of a salt solution is considerably increa
due to a depletion zone of salt ions close to the free sur
@4–7#. The electrostatic self-energy of an ion which is mov
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towards an interface between two different salt solutions
been considered theoretically using approximations wh
essentially correspond to the DH theory@8,9#, showing that it
costs energy to move an ion from an electrolyte solution t
substrate surface or the electrolyte-air interface. A salt so
tion which is confined to a two-dimensional plane has be
shown to produce~in the absence of additional salt ions
the surrounding three-dimensional bulk! an effective interac-
tion between two charges, which decays as the inverse c
of the separation@10–13#. Quite recently, it was realized tha
a two-dimensional salt solution is realized by membran
consisting of cationic and anionic lipids or surfactants, w
important consequences for the membrane elastic beha
and the interaction between two such membranes@14,15#.
Also, it is clear that the influence of fluctuation effects, su
as those captured within DH theory, on the interaction
tween charges will play a role for a variety of biologic
phenomena, such as DNA adsorption on charged membr
@16–18#. Finally, the interaction between test charges a
surface of a three-dimensional salt solution has also b
shown to decay algebraically@19–22#.

In this paper we formulate the DH theory in the presen
of an interface, which furnishes a unified description of
phenomena mentioned above. In specific, we consider a
nar interface which contains salt ions of a certain fixed c
centration, and which separates two half-spaces, each w
fixed ~in general different! salt concentration and with differ
ent dielectric constants. As a main result, we obtain the
fective interaction between two charges located at arbitr
distances from the interface, i.e., the DH Green’s funct
vDH(r ,r 8), and we analyze its behavior for various limitin
cases. We find strong modifications of the ordinary DH
teraction: The self-energy of a single charge, which is giv
by the equal-point Green’s functionvDH(r ,r ), exhibits a
strong attraction towards regions of increased salinity, b
for the case of a two-dimensional salt layer or a salty ha
3174 © 1999 The American Physical Society
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PRE 60 3175DEBYE-HÜCKEL THEORY FOR INTERFACIAL GEOMETRIES
space~see Fig. 1!. The interaction between two charges
modified close to a salty interface or close to a half-sp
with a different salt concentration and decays algebraic
for a wide class of different cases. These results do h
some relevance for the adsorption of charged colloids
charged polymers at substrates or the air-water interface

II. DEBYE-HÜ CKEL THEORY

In this section, we formulate the DH theory within a fiel
theoretic formalism. We start from the partition function
N test particles which carry an~in general different! charge
Qi each, and which are fixed at positionsRi . These fixed test
particles are immersed in a multicomponent electrolyte so
tion which is confined to a planar interfacial geometry.
specific, we haveM . different types ofnj

. ions with a
charge qj

. ( j 51, . . . ,M .), confined to the upper half
space (z.0), M , different types of ions confined to th
lower half-space (z,0), andM 5 types of ions which move
in the separating plane (z50). The partition function, with
all ions freely moving and the test particles fixed at th
positions, reads

Z@$RN%#5E D̃ expH 2
1

2E dr dr 8r̂c~r !v~r ,r 8!r̂c~r 8!J .

~1!

In the partition function, the positions of theN fixed test

particles are denoted by$RN% and the symbol*D̃ stands for
a multiple integral over the positions of all mobile salt ion

FIG. 1. Charged colloidal particle interacting with~a! a salty
plane, and~b! a salty half-space. In both cases, polarization char
of opposite sign gather near the colloidal particle and lead t
strong attraction to the interface.
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M, F 1
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,
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, #G
3)

j 51

M5 F 1

nj
5!

)
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nj
5

E dr k, j
5

l2
d@zk, j

5 #G , ~2!

where the lengthl is an arbitrary constant, equivalent to th
thermal wavelength. The Heavyside functionQ(z)
5*2`

z dz8d(z8) is used to restrict the configurational inte
grals to one of the two half-spaces. We allow for a jump
the dielectric constant, which we denote by« for z.0 and
«8 for z,0. The Coulomb operator is given by

v~r ,r 8!

55
l B

ur2r 8u
1

«2«8

«1«8

l B

A~r2r 8!214zz8
for z,z8>0

2l B«

~«1«8!ur2r 8u
for z>0>z8,

~3!

where the Bjerrum lengthl B[e2/4p«kBT defines the length
at which two unit charges interact with thermal energykBT
in the positive half-space. In the absence of a jump in
dielectric constant,«5«8, the Coulomb interaction Eq.~3!
reduces tov(r ,r 8)5l B /ur2r 8u; the modifications from this
standard form are due to the formation of polarizati
charges at the interface. The charge-density operatorr̂c is
defined by

r̂c~r ![(
i 51

N

Qid~r2Ri !1(
j 51

M.

(
k51

nj
.

qj
.d~r2r k, j

. !

1(
j 51

M,

(
k51

nj
,

qj
,d~r2r k, j

, !1(
j 51

M5

(
k51

nj
5

qj
5d~r2r k, j

5 !

~4!

and contains the fixed test charges~the first term! and the
mobile salt ions~the last three terms!. We enforce electro-
neutrality of the mobile salt distributions separately in t
two half-spaces and in the plane, which leads to the con
tions ( j 51

M. nj
.qj

.50, ( j 51
M, nj

,qj
,50, and ( j 51

M5 nj
5qj

550.
Noting that the inverse Coulomb operator can be explic
written as v21(r ,r 8)52(kBT/ l 2)¹«(r )¹d(r2r 8), when
«(r ) is the position-dependent dielectric constant, afte
Hubbard-Stratonovich transformation, the partition functi
is up to second order in the fluctuating fieldf given by

Z@$RN%#5E Df

Z0
expH 2

1

2E drE dr 8f~r !vDH
21~r ,r 8!f~r 8!

2 i(
i 51

N

Qif~Ri !1SJ , ~5!

s
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3176 PRE 60RONALD R. NETZ
where Z0 is the partition function of the inverse Coulom
operator,Z0;Adetv. This second-order expansion corr
sponds to the DH theory generalized to an interfacial geo
etry. The higher-order terms in the fluctuating fieldf which
we neglect contain nonlinear effects~such as those present
the Poisson-Boltzmann theory!, but also higher-order corre
lation effects. These higher-order terms have recently b
considered for the bulk situation in a systematic fie
theoretic expansion@23#. It is important to note that the DH
theory in the present formulation, although it neglects n
linear effects, goes beyond the mean-field~Poisson-
Boltzmann! approach in that correlations and fluctuations
included on a Gaussian level. The entropy of ideal mixing
S[2( jnj

. ln(l3cj
.)2(jnj

, ln(l3cj
,)2(jnj

5 ln(l2cj
5) with

cj
.[nj

./V. , cj
,[nj

,/V, , and cj
5[nj

5/A denoting the
concentrations of ion speciesj in the two half-spaces and a
the interface, respectively. The kernelvDH

21 is the functional
inverse of the DH potential and is defined by

vDH
21~r ,r 8![v21~r ,r 8!1@k.

2 Q~z!1k,
2 Q~2z!

1k5d~z!#d~r2r 8!/4pl B . ~6!

The screening lengths in the two half-spaces and at the
terface, k.

21 , k,
21 , and k5

21 , are defined by k.
2

54pl B( j (qj
.)2cj

. , k,
2 54pl B(«/«8)( j (qj

,)2cj
,, and

k554pl B( j (qj
5)2cj

5 . The linear term inf in Eq. ~5! can
be removed by a shift of the fluctuating fieldf, leading to

Z@$RN%#5e2F[ $RN%]E Df

Z0

3expH 2
1

2E dr dr 8f~r !vDH
21~r ,r 8!f~r 8!1SJ .

~7!

The effective free energy for theN test particles reads

F@$RN%#5
1

2 (
i

Qi
2vDH~Ri ,Ri !1(

i . j
QiQjvDH~Ri ,Rj !.

~8!

For a continuous charge distributions(r ) the free energy can
in a simple generalization of Eq.~8! be written as

F@s#5
1

2E drE dr 8s~r !vDH~r ,r 8!s~r 8!. ~9!

Equations~8! and ~9! constitute straightforward but impor
tant results, since it means that once the DH poten
vDH(r ,r 8) has been calculated, the electrostatic energy o
arbitrary fixed charge distribution can be computed, wh
then takes into account correlations between the counte
distributions. The first term in Eq.~8! corresponds to the
test-particleself-energies, and the second term in Eq.~8!
describes interactions betweendifferentparticles. It remains
to actually calculatevDH(r ,r 8), which is complicated be-
cause of the broken translational invariance in thez direc-
tion. Since the system still has translational invariance p
allel to the plane, we may write
-
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vDH~r ,r 8!5E dp

~2p!2
eıp•(r i2r i8)vDH~z,z8,p!, ~10!

with a similar transformation for the inverse potential,vDH
21 .

Combining the canonical relation between the DH poten
vDH and its inverse,

E
2`

`

dz̃vDH~z,z̃,p!vDH
21~ z̃,z8,p!5d~z2z8!, ~11!

with the definition ofvDH
21 , Eq. ~6!, we obtain the differential

equations

24pl Bd~z2z8!5F ]2

]z2
2k.

2 2p2GvDH~z,z8,p!, ~12!

24p
l B

h
d~z2z8!5F ]2

]z2
2k,

2 2p2GvDH~z,z8,p!,

~13!

valid for z.0 and z,0, respectively. We introduced th
dielectric constant ratioh5«8/«. In the limit z→0, we ob-
tain the boundary condition

k5vDH~0,z8,p!5
]

]z
@vDH~z,z8,p!1hvDH~2z,z8,p!#.

Similar Green’s functions occur in the context of surfa
critical phenomena@24,25#. The solutions can be calculate
in a straightforward manner and are given by

vDH~z,z8,p!5
4pl B

Ak.
2 1p21hAk,

2 1p21k5

3e2zAk.
2

1p21z8Ak,
2

1p2
~14!

for z>0>z8, and

vDH~z,z8,p!5
2pl B

Ak.
2 1p2 Fe2uz2z8uAk.

2
1p2

1
Ak.

2 1p22hAk,
2 1p22k5

Ak.
2 1p21hAk,

2 1p21k5

3e2(z1z8)Ak.
2

1p2G ~15!

for z>0 andz8>0. These two equations constitute the ma
result of this paper, and the remaining sections are devote
discussions of special cases.

III. RESULTS

In the absence of an interface, i.e., forh51 ~no dielectric
jump!, k550 ~no surface ions!, andk.5k,5k ~no jump
in salt concentration!, we obtain from Eqs.~10! and~14! the
classical result
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vDH~r ,r 8!5l B

e2kur2r8u

ur2r 8u
. ~16!

Another example where the Green’s function can
solved with ease is for a metallic half-space, characterized
h5`. We obtain

vDH~r ,r 8!5l B

e2k.ur2r8u

ur2r 8u
2l B

e2k.
A(r2r8)214zz8

A~r2r 8!214zz8
.

~17!

One sees that the second term counteracts the first ter
one goes closer to the surface, i.e., whenz andz8 approach
zero. Right at the surface, forz5z850, the interaction van-
ishes identically. The ionic self-energy is, subtracting off t
energy at an infinite distance from the plane, defined as

vDH
self~z!5E dp

~2p!2
@vDH~z,z,p!2vDH~`,`,p!# ~18!

and measures the free energetic cost of bringing a single
to the surface. For the metallic substrate, characterized
h5`, we obtain the screened version of the usual ima
charge interaction,

vDH
self~z!52l B

e22k.z

2z
. ~19!

The substrate strongly attracts charges of any kind.
On the other hand, settingh50, which is a fairly accurate

approximation for a substrate with a low dielectric const
~as will be briefly discussed at the end of this section!, one
obtains in the case whenk550 ~no surface ions! the result

vDH~r ,r 8!5l B

e2k.ur2r8u

ur2r 8u
1l B

e2k.
A(r2r8)214zz8

A~r2r 8!214zz8
,

~20!

i.e., the interaction close to the surface is enhanced. Righ
the substrate surface, forz5z850, the Debye Hu¨ckel inter-
action in Eq.~16! is enhanced by a factor of 2. The se
energy follows from Eq.~18! as

vDH
self~z!5l B

e22k.z

2z
, ~21!

and in this case the ions are repelled from the substrate
the following we give a comprehensive overview over t
self-energies and interaction energies for the more com
cated cases.

A. Self energy—Asymptotic results

The general behavior of the self-energy for large sepa
tions from the interface follows from Eqs.~15! and ~18! as

vDH
self~z!.l B

k.2hk,2k5

k.1hk,1k5

e22k.z

2z
, ~22!

and we find an attraction to the interface only ifhk,1k5

.k. holds, i.e., for relatively large concentrations of ions
e
y

as

on
by
-

t

at

In

li-

a-

t

the interface or for an excess of salt ions in the lower ha
space. The asymptotic result for small separations from
interface is

vDH
self~z!.

l B

2z

12h

11h
, ~23!

which is just the bare Coulomb interaction, Eq.~3!. For h
,1 ~lower half-space of low dielectric constant! the interac-
tion is repulsive, forh.1 ~lower half-space of high dielec
tric constant! the interaction is attractive. Forh51, i.e., for
two half-space which are dielectrically matched, the lead
term given in Eq.~23! vanishes; for this interesting case w
present results in the following sections. One notes that
the air-water interface one has a dielectric constant ratio
abouth5«air /«water'0.01, and thus putting the constanth
to zero is in many cases a good approximation. In so
cases, however, the small deviations from theh50 limit are
important~see, for example, Sec. III F!.

B. Self-energy at a salty interface

The experimental situation we have in mind here is
charged particle~a multivalent ion or a charged colloid! at a
membrane or monolayer consisting of cationic and anio
lipids.

We first assume the salt concentrations and the dielec
constants on the two sides of the plane to be the same,
k.5k,5k and h51, which is a good approximation fo
the case of a thin lipid bilayer immersed in a salt solution
the distance of the colloidal particle from the bilayer is larg
than the bilayer diameter. In this case we obtain for the s
energy

vDH
self~z!52

l Bk5

2
ezk5G@0,z~k512k!#, ~24!

whereG denotes the incomplete Gamma function@26#. Us-
ing the asymptotic behavior of the incomplete Gamma fu
tion, this leads to

vDH
self~z!.

l Bk5

2
ln@z~k512k!#

for z!(k512k)21, and, in agreement with the asymptot
result in Eq.~22!,

vDH
self~z!.2

l Bk5e22zk

2z~k512k!

for z@(k512k)21. We see that an ion is always attracte
to the salty plane. In Fig. 2~a! we plot the rescaled self
energyvDH

self/l Bk as determined by Eq.~24! as a function of
the rescaled distancezk from the salty interface for four
different values of the ratiok5 /k51,5,10,50~from top to
bottom!. As it turns out in a systematic field-theoretic trea
ment, the densityr j (z) of ion speciesj is given by r j (z)

5cje
2qj

2vDH
self(z)/2, wherecj is the bulk density. The logarith

mic attraction at small separations leads to a self-similar i
density profiler j.z2m with an exponentm5l Bk5qj

2/4.
The attraction is only physical for separations larger than
ion size@27#. We therefore expect that the self-similar de
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sity profile is cut off for distances smaller than the ion siz
In experiments on membranes it is easy to achieve a situa
where one hask5@k. In this case one has an intermedia
range k5

21,z,k21 for which the attraction decays a
vDH

self(z).2l B/2z and thus behaves like the unscreened C
lomb attraction between the ion and its mirror image.

We next assume thath50, which means that the dielec
tric constant of the lower half-space is infinitely smaller th
that of the upper half-space. This is a good approximation
a monolayer at the air-water interface or for a lipid bilay
immersed in a salt solution if the distance of the colloid
particle from the bilayer is much smaller than the bilay
diameter. In this case the results are independent of the
concentration in the lower half-space,k, , and we obtain for
the self-energy

vDH
self~z!5

l Be22kz

2z
22l Bk5e2zk5G@0,2z~k51k!#.

~25!

The asymptotic behavior of this expression is in agreem
with the asymptotic formulas~22! and ~23!. In Fig. 2~b! we
plot the rescaled self-energyvDH

self/l Bk as a function of the
rescaled distancezk from the substrate for four differen
values of the ratiok5 /k51,5,10,50. We see that an ion
attracted to the salty plane fork5.k. The minimum moves
towards the substrate as the interfacial ion density increa
The minimum is deep enough to bind multivalent ions
macroions.

C. Self-energy at an interface between two different salt
solutions

The experimental situation we envision here is a t
membrane~or a film! which separates two aqueous solutio

FIG. 2. Rescaled self-energy of a charged particle as a func
of the rescaled distance from the salty interface.k is the inverse
screening length in the bulk, andk5 is the in-plane screening
length. Shown are results for~a! matching dielectric constants o
both sides of the interface,«5«8, and~b! vanishing dielectric con-
stant on the other side of the interface,«850. The screening length
ratios arek5 /k51, 5, 10, and 50, from top to bottom.
.
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with different salt concentrations. For the case of an interf
between two immiscible liquids, with in general differe
dielectric constants, it turns out that the self energy is do
nated by the dielectric-constant jump at small separati
and the asymptotic expressions given in Eqs.~22! and ~23!
are sufficient to describe the situation. In this section,
therefore consider the case of matching dielectric const
at both sides of the interface,h51, and set the salt concen
tration at the interface to zero,k550.

The ionic self energy in the positive half space~for z
.0) follows from Eq.~18! as

vDH
self~z!5l BE

k.

`

dt
t2At21k,

2 2k.
2

t1At21k,
2 2k.

2
e22zt. ~26!

For small separations,z!(k.1k,)21, the limiting behav-
ior of Eq. ~26! is

vDH
self~z!.vDH

self~0!1l B~k.
2 2k,

2 !z ln@z~k.1k,!#/2,

and for large separations,z@(k.1k,)21, the asymptotic
expression in Eq.~23! with h51 andk550 is valid. The
interaction at contact is finite in this case and reads

vDH
self~0!5l B

k.
3 23k,

2 k.12k,
3

3~k.
2 2k,

2 !
.

For k.@k, , here the ion is located in the salt-rich hal
space, the ion isrepelledfrom the interface, and the interac
tion is for z.k.

21 given byvDH
self(z).l Be2zk./2z; the repul-

sion at contact isvDH
self(0).l Bk./3. For k.!k, , here the

ion is located in the salt-poor half-space; the ion isattracted
to the interface. The interaction is fork,

21,z,k.
21 given by

vDH
self(z).2l B/2z, and crosses to an exponentially damp

form vDH
self(z).2l Be2zk./2z for z.k.

21 ; the attraction at
contact is vDH

self(0).22l Bk,/3. We therefore expect an
ionic depletion layer in the salt-rich half, and an ionic e
hancement layer in the salt-poor half, each layer with a thi
ness of the respective screening length.

D. Interactions at a salty interface

We next turn to ionicinteractionsas determined by Eq
~10! and start with two charged particles located in a sa
plane, i.e.,z5z850, in which case the interaction depen
only on the lateral particle spacingr i . We first assume both
half-spaces to be free of salt, i.e.,k.5k,50, and obtain
from Eqs.~10! and ~14!

vDH~r i!5
2l B

r i~11h!
E

0

`

dp
p

p1r ik5 /~11h!
J0@p#,

whereJ0 is the Bessel function of the first kind@26#. The
integral can be calculated in closed form and leads to@11#

vDH~r i!5
2l B

r i~11h!
1

pl Bk5

~11h!2 S N0F r ik5

11hG2H0F r ik5

11hG D ,

~27!

whereN0 andH0 denote the Neumann and the Struve fun
tions, respectively@26#. The asymptotic behavior is

n
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vDH~r i!.
2l B

r i~11h!
1

2l Bk5

~11h!2
ln@r ik5# ~28!

for r i!k5
21 , and

vDH~r i!.
2l B~11h!

k5
2 r i

3
~29!

for r i@k5
21 . We see that screening is much weaker for la

separations than in the case of a three-dimensional salt s
tion, resulting in a DH interaction which is in fact lon
ranged. In the presence of salt ions in the embedding sp
~in the following we assumek,5k.5k) the behavior is
modified at large separations. The behavior now depend
the relative salt concentration in the interface and in the b
for k.k5 , that means that for large bulk salt concentratio
one has a behavior described by Eq.~28! for short separa-
tions r i,k21 and the regular DH interaction,

vDH~r i!.
2l Be2kr i

r i~11h!
~30!

for r i.k21; in this case the salt ions in the plane are re
tively unimportant. In the opposite limit,k,k5 , for small
bulk salt concentration, one obtains Eq.~28! for short sepa-
rationsr i,k5

21 , Eq. ~29! for r i.k5
21 , and a crossover be

tween Eq.~29! and Eq.~30! at r i* ;k21 ln@k5 /k#. For two
charges which are both a distancez apart from the plane, the
interaction depends onz and the lateral separationr i and is
defined by

vDH~r i ,z!5l BE
0

`

dpF11
p~12h!2k5

p~11h!1k5
e22zpGJ0@pr i#.

For z,k5
21 the fact that the charges are a finite distan

away from the salty plane only leads to subfluent correcti
and Eqs.~28! and~29! are valid. For intermediate separatio
from the interface, fork5

21,z,r i , we find

vDH~r i ,z!.
2l Bz2

r i
3

. ~31!

If the two particles are far apart from the surface,k5
21,z,

but relatively close to each other,r i,z, screening effects can
be neglected and we obtainvDH(r i ,z).l B /r i . In the case
of a finite salt concentration in the external space, all int
actions are replaced by the ordinary DH potential~30! if any
of the length scales,z or r i , becomes larger than the scree
ing lengthk21.

E. Interactions through a salty interface

We discuss the interaction of two charges through a s
membrane for the symmetric casek.5k,5k and also as-
sume the dielectric constants are the same, i.e.,h51. For
simplicity, we assume both particles share the same lat
position. The interaction only depends on the distancedz
5uz2z8u between the particles,
e
lu-

ce
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vDH~dz!5
l B

dz
e2kdzS 12F112

k

k i
G21

xexG@0,x# D ,

where we have used the short-hand notationx5dz(k i/2
1k). The functionxexG@0,x# is negative forx,1, with a
minimum of '20.4 at x'0.1; for this range of particle
separations, the DH interaction isenhancedby the presence
of the salty membrane. Forx.1, the functionxexG@0,x# is
positive, with a maximum of'0.1 atx'1.9; for this range
of particle separations the DH interaction isweakenedby the
presence of the salty membrane. Since the prefactor 1
12k/k i) is smaller than unity, it follows that the effectiv
interaction for separationsx.1 is weakened due to polariza
tion charges on the membrane, but never changes sign.
repulsion between two similarly charged spheres is thus
hanced for smalltrans-membrane separations, and weaken
for larger separations, but never turns into an attraction.

F. Interactions at an interface between two different salt
solutions

Here we describe the experimental situation where t
charged objects which are immersed in a salt solution
proach each other close to the water-air interface or a s
strate. The air or the substrate contain no salt. We there
set k,50. The dielectric constant ratioh is an important
parameter. We also set the interfacial ion concentration
zero, k550. For two ions which are located right at th
interface,z5z850, the interaction energy follows from Eqs
~10! and ~15! as

vDH~r i!5l BE
0

`

dpF11
Ak.

2 1p22hp

Ak.
2 1p21hp

GpJ0@pr i#

Ak.
2 1p2

.

For small values ofh it is permitted to expand in powers o
h. We obtain for small separations,r i,k.

21 ,

vDH~r i!.
2l B~12h!

r i
,

and for large separations,r i.k.
21 ,

vDH~r i!.
2l B

r i
S e2k.r i1

h

k.
2 r i

2D .

We see that for very large separations the algebraic de
dominates the interaction@19–21#. The crossover from ex-
ponential to algebraic decay occurs atr i* ;k.

21ln(1/h),
which can for small values ofh be a large number. The
algebraic decay comes about since the charges form, toge
with their associated counterion clouds, dipoles, which int
act without screening effects through the lower half-space
we now consider the interaction between two charges wh
are both a distancez away from the salty interface, we obtai
for small values ofh and for large separations,r i.k.

21 ,

vDH~r i!.
l Be2k.r i

r i
1

l Be2k.Ar i
2
14z2

r i
1

2hl B

k.
2 r i

3
e22k.z.
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The algebraic decay is exponentially weakened as the
tance from the interfacez increases, but it is always releva
for large lateral distances. The crossover distance is sh
to higher values as the distance from the interface incre
and readsr i* .2z1k.

21ln(1/2h).
A special case which can be solved in closed form is

h51, in which case we obtain

vDH~r i!5
2l B

k.
2 r i

3 ~12e2k.r i@11k.r i# !.

For large separations,r i.k.
21 , we again find an algebrai

decay vDH(r i).2l B /k.
2 r i

3 , and for small separations,r i
,k.

21 , we recover the bare Coulomb interactionvDH(r i)
.l B /r i .

G. Charged polymers

In this section we give some results for the self-energy
a charged straight line, parallel to the substrate, and for
interaction between two parallel charged lines close to
interface. This is a very simple model for the adsorption
synthetic polyelectrolytes on charged substrates, and sh
give an acceptable estimate for the electrostatic adsorp
energy if ~i! the polymer is strongly adsorbed and thus l
flat on the substrate, and~ii ! the polymer is locally straight
Both conditions are in fact met over a wide range of para
eters for fully charged synthetic polymers, as shown theor
cally @28# and experimentally@29#. For the adsorption of
DNA on charged substrates, a straight-line model has b
used in various theoretical approaches@17,18#, and it is in
fact expected to be a good approximation, since DNA is v
stiff and in the adsorbed state the DNA is flat, straight, a
parallel to the substrate@16#. In the following, we assume th
lower half-space contains no salt, as is appropriate for
adsorption of a charged polymer at a solid substrate or a
water-air interface.

Denoting the line or polymer charge density byt, the
self-energy per polymer unit length as a function of the d
tancez from the interface is

f DH
self~z!5

t2

2 E2`

` dp

2p
@vDH~z,z,p!2vDH~`,`,p!# ~32!

with vDH(z,z,p) given in Eq.~15!. The asymptotic result for
large distances from the wall is

f DH
self~z!.

l Bt2

2 S k.2k5

k.1k5
DA p

k.z
e22zk.. ~33!

The polymer is attracted to the interface only if the salt co
centration in the surface is higher than the bulk concentra
of salt. In the absence of surface ions, there is an expone
repulsion from the interface which has to do with the miss
screening effects in the lower half-space. In the limit of sm
separations, the asymptotic result is

f DH
self~z!.l Bt2

12h

11h
ln~1/k.z!. ~34!
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For values ofh smaller than unity, the polymer is logarith
mically repelled from the substrate, which is due to imag
charge effects. Forh51 the logarithmic term vanishes.

Settingh51 andk550, we can solve the integral in Eq
~32! exactly and obtain for the self-energy

f DH
self~z!5

l Bt2

2 S K0@2k.z#1K2@2k.z#1
K1@2k.z#

zk.

2
112k.z

z2k.
2

e22k.zD . ~35!

For small separation,z,k. , we obtain from Eq.~35! the
asymptotic expansion f DH

self(z).l Bt2(1/224zk./3);
for large separations the result is f DH

self(z)
.l Bt2e22zk.Ap/4zk. and thus agrees with the gener
asymptotic result Eq.~33!. There is therefore a strong repu
sion from the wall, which for small separations is of th
order of l Bt2 per polymer unit length, and which is due t
the fact that there are no mobile ions inside the substr
This repulsion is therefore solely due to the absence
screening in one half-space. It is this term which is contr
uting to the strong repulsion of a charged rod from an op
sitely charged substrate which has been seen in MD sim
tions at short separations@18#.

In the limit h50, which corresponds to a substrate with
very small dielectric constant, andk550, the integral Eq.
~32! gives

f DH
self~z!5l Bt2K0@2kz#. ~36!

For small arguments the Bessel function goes likeK0@x#;
2 ln(x) and for large arguments it goes likeK0@x#
;Ap/2xe2x, and we thus recover the general asympto
results Eqs.~33! and ~34!. The strong repulsion from the
low-dielectric substrate has recently been shown theor
cally to induce a polymer desorption transition for strong
charged polymers, and therefore cannot be neglected
theoretical modeling of polyelectrolyte adsorption@28#. In
the limit h5`, corresponding to adsorption on a metal su
strate, we obtain the same result as in Eq.~36! but with a
negative sign. In this case, there is an overall attraction to
substrate, even in the absence of charges on the subs
surface.

The interaction between two parallel polymers at a mut
separationd, which are both at a distancez from the sub-
strate, is defined as

f DH~z,d!5t2E
2`

` dp

2p
vDH~z,z,p!cos@pd# ~37!

with vDH(z,z,p) given in Eq.~15!. The asymptotic result for
large distances between the polymers is obtained from
~37! by partial integration and reads

f DH~z,d!.2l Bt2K0@dk.#1
4l Bt2h

d2~k.1k5!2
e22zk.

~38!
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and we see that for large lateral separationsd the repulsion
decays as an inverse square ofd. This is a direct consequenc
of the fact that the interaction between two charges decay
an inverse cube of the lateral distance between them;
Sec. III F. We note that for small values ofh the algebraic
decay of the repulsive energy only dominates the expone
decay from the Bessel function for lateral separations m
larger than the screening length. For small separations
repulsion goes as

f DH~z,d!.
4l Bt2

11h
ln~1/dk.!, ~39!

that is, we find a small increase of the repulsion in the cas
a low-dielectric substrate. The algebraic decay of polym
polymer interactions at large separation has been rece
shown to lead to an enhancement of the electrostatic pe
tence length of a polyelectrolyte close to a substrate@28#.

IV. DISCUSSION

In this paper we consider the generalized DH theory
planar interfaces which contain mobile salt ions and wh
divide half-spaces with different salt concentrations and
ferent dielectric constants. We explicitly calculate the D
Green’s function,vDH(r ,r 8), for several special cases. Th
equal-point Green’s function,vDH(r ,r ), corresponds to the
self-energy of a charged particle. We find charged partic
to be strongly attracted to salty layers, which could be
perimentally tested with complexation experiments
charged colloids and membranes containing anionic and
ionic lipids. Similarly, for an interface dividing salt solution
of two different concentrations, a charged particle residing
the salt-poor half-space is attracted to the salt-rich h
space. This could be checked experimentally with vesic
which have a high intravesicular salt concentration, osm
as
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cally matched with a nonelectrolyte extravesicular solutio
charged colloids should strongly bind to these salty vesic
We also analyzevDH(r ,r 8), the interaction between two
charges. Close to salty interfaces and close to an interfac
a salt-free half-space, we find the interaction to decay a
braically with the lateral distance between the two charg

Our calculations are restricted to—on average—neu
planes and half-spaces. The potential distributionf(r ) of an
arbitrary charge distributions(r ) can be calculated within
the framework of DH theory by convolutings(r ) with the
Green’s function,

f~r !5E dr 8s~r 8!vDH~r ,r 8!. ~40!

For a homogeneously charged interface with surface cha
density s we obtain from Eqs.~14! and ~40! the reduced
electrostatic potential

f~z!5
4pl Bse2zk.

k.1hk,1k5
. ~41!

The potential is reduced for interfaces containing surfa
ions (k5.0), which is a pure correlation effect betwee
surface ions and counterions. The total electrostatic poten
of a charged colloidal particle at a charged interface follo
by adding the electrostatic potential, Eq.~41!, and the elec-
trostatic self-energy, which has been calculated in Secs. I
and III C.

As is well known, DH theory neglects nonlinear effec
which become important when the electrostatic potentia
larger than the thermal energy. These nonlinear effects
equivalent to effective multipoint interactions and can
treated in a systematic field theory by including higher-lo
corrections@23#.
ce
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